Elaboration and characterization of a free standing LiSICON membrane for aqueous lithium-air battery

نویسندگان

  • Laurent Puech
  • Christophe Cantau
  • Philippe Vinatier
  • Gwenaëlle Toussaint
  • Philippe Stevens
چکیده

In order to develop a LISICON separator for an aqueous lithium-air battery, a thin membrane was prepared by a tape-casting of a Li1.3Al0.3Ti1.7 (PO4)3−AlPO4 based slip followed by a sintering step. By optimizing the grain sizes, the slip composition and the sintering treatment, the mechanical properties were improved and the membrane was reduced to a thickness of down to 40 μm. As a result, the ionic resistance is relatively low, around 38 Ω for a 55 μm membrane of 1 cm. One side of the membrane was coated with a lithium oxynitrured phosphorous (LiPON) thin film to prevent lithium metal attack. Lithium metal was electrochemically deposited on the LiPON surface from a saturated aqueous solution of LiOH. However, the ionic resistance of the LiPON film, around 67 Ω for a 1.2 μm film of 1 cm, still causes an important ohmic loss contribution which limits the power performance of a lithium-air battery.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preparation, characterization and stability of Li-ion conducting Li1.5Al0.5Ge1.5(PO4)3 glass-ceramic with NASICON-type structure

A conducting lithium aluminum germanium phosphate (LAGP) glass-ceramic with a formula of Li1.5Al0.5Ge1.5(PO4)3 was synthesized by melt-quenching method and subsequent crystallization at 850 °C for 8 h. The prepared glass-ceramic was characterized using differential scanning calorimetry (DSC), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and AC impedance techniqu...

متن کامل

Electrode Materials for Lithium Ion Batteries: A Review

Electrochemical energy storage systems are categorized into different types, according to their mechanisms, including capacitors, supercapacitors, batteries and fuel cells. All battery systems include some main components: anode, cathode, an aqueous/non-aqueous electrolyte and a membrane that separates anode and cathode while being permeable to ions. Being one of the key parts of any new electr...

متن کامل

A lithium ion battery using an aqueous electrolyte solution

Energy and environmental pollution have become the two major problems in today's society. The development of green energy storage devices with good safety, high reliability, high energy density and low cost are urgently demanded. Here we report on a lithium ion battery using an aqueous electrolyte solution. It is built up by using graphite coated with gel polymer membrane and LISICON as the neg...

متن کامل

Electrochemical Characterization of Low-Cost Lithium-Iron Orthosilicate Samples as Cathode Materials of Lithium-Ion Battery

Lithium-iron-orthosilicate is one of the most promising cathode materials for Li-ion batteries due to its safety, environmental brightness and potentially low cost. In order to produce a low cost cathode material, Li2FeSiO4/C samples are synthesized via sol-gel (SG; one sample) and solid state (SS; two samples with different carbon content), starting from Fe (III) in the raw materials (lo...

متن کامل

Studying lithium-ion battery packs cooling system using water-nanofluids composition

In this study, the Li-ion batteries temperature increase during the discharge process was measured empirically and evaluated using numerical simulation. Moreover, the battery packs cooling using the water, air and water-nano composition fluids such as water-alumina, water-copper oxide, and water-gold was studied through numerical simulation. Accordingly, the battery cooling was simulated by CFD...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017